Differential Quadrature and Its Application in Engineering

Chang Shu 2012-12-06 In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme and weighting coefficients.

Differential Quadrature and Its Application in Engineering

Chang Shu 2000-01-14 In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme and weighting coefficients.

Differential Quadrature and Its Application in Structural and Vibrational Analysis

Chang Shu 1999-11-01 In the past few years, the differential quadrature (DQ) method has been extensively applied in engineering. This book gives a systematic description of the mathematical fundamentals for the DQ method and its detailed implementation in solving the flow, structural, as well as Helmholtz problems. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge–Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to quickly acquire hands-on experience with DQ methods. Focusing on leading-edge DQ methods, this book helps readers understand the majority of journal papers on the subject. In addition to gaining insight into the dynamic changes that have recently occurred in the field, readers will quickly master the use of DQ methods to solve complex problems.

Differential Quadrature and Its Application in the Solution of Boundary Layer Equations

Chang Shu 1999-11-01 In the past few years, the differential quadrature (DQ) method has been extensively applied in engineering. This book gives a systematic description of the mathematical fundamentals for the DQ method and its detailed implementation in solving the flow, structural, as well as Helmholtz problems. The DQ method is a global approach for numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based DQ methods can be computed explicitly. It is also demonstrated that the polynomial-based DQ method is equivalent to the highest-order finite difference scheme and weighting coefficients.

Differential Quadrature and Its Application in Engineering Engineering Applications

Maybe you have knowledge that, people have look numerous times for their favorite books in the manner of this differential quadrature and its application in engineering engineering applications. You may not be perplexed, but stop occurring in harmful downloads.

Differential Quadrature and Its Application in Engineering Engineering Applications

You can easily get to in our digital library an online permission to it is set as public so you can download it instantly. Our digital library saves in multipart countries, allowing you to get the most less latency epoch to download any of our books bearing in mind this one. Merely said, the differential quadrature and its application in engineering engineering applications is universally compatible later any devices to read.
through the three sample programs, the readers can understand the DQ method better and can easily modify the programs to solve their own engineering problems.

Advanced Numerical and Semi-Analytical Methods for Differential Equations-Snehashish Chakraverty 2019-03-20 Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs. This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the nature of equations and offers simple sample problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi-analytical methods like Akhlaq Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs. Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment. Includes a new scenario in which uncertainty in term of intervals and fuzzy numbers has been included in differential equations. Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as postgraduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Sinc Methods for Quadrature and Differential Equations-John Lund 1992-01-01 Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors’ use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right.

Mechanics of laminated Composite doubly-curved shell structures-Francesco Tornabene 2014-03-01 This manuscript comes from the experience gained over ten years of study and research on shell structures and on the Generalized Differential Quadrature method. The title, Mechanics of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials through the application of the Differential Quadrature (DQ) technique. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally Graded Materials” (FGMs). They are non-homogeneous materials, characterized by a continuous variation of the mechanical properties through a particular direction. The GDQ numerical solution is compared, not only with literature results, but also with the ones supplied and obtained through the use of different structural codes based on the Finite Element Method (FEM). Furthermore, an advanced version of GDQ method is also presented. This methodology is termed Strong Formulation Finite Element Method (SFEM) because it employs the strong form of the differential system of equations at the master element level and the mapping technique, proper of FEM. The connectivity between two elements is enforced through compatibility conditions.

Application of the Differential Quadrature Method to the Plane Elasticity Problem-Ross Wesley McDonald 1995

Mathematical Methods in Interdisciplinary Sciences-Snehashish Chakraverty 2020-06-15 Brings mathematics to bear on your real-world, scientific problems. Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author’s clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems; Heat conduction and diffusion problems; Fluid dynamics problems. The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.

Mathematical Methods In Medicine-Richard Bellman 1983-04-01 This book is intended for medical students and advanced undergraduates such as physicists and mathematicians with inter-disciplinary interests, biophysicists, medical physicists, applied mathematicians and others who wish to understand medicine in mathematical terms as well as current mathematical applications in physiology and medicine. The mathematical presentation is clear and self-contained. This book, representing 15 years of work at RAND Corporation and USC on chemotherapy, pharmacokinetics and nuclear medicine, attempts to direct medical scientists towards mathematical aspects of problems in medicine. The book begins with an introduction to compartmental models and matrix theory, highlighting the advantages of the approach. Discussions on how questions in observations and testing lead to multi-point boundary value problems are presented. The potentials of the digital computer in the biochemical field are examined. A new approach — dynamic programming — to overcome clinical constraints is covered in detail. The reader should obtain a broad impression of where future research opportunities in the biochemical field lie.

A Generalization and Application of the Differential Quadrature Method-Tianyun Wu 2000

Application of Differential Quadrature Method to the Analysis of Delamination Buckling of Laminated Composites-Shapour Moradi 1998

Theory and Applications of Gaussian Quadrature Methods-Narayan Kovvali 2011-10-10 Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software

A Differential Quadrature Hierarchical Finite Element Method-Bo Liu 2021-08-03 The differential quadrature hierarchical finite element method (DQHFEM) was proposed by Bo Liu. This method incorporated the advantages and the latest research achievements of the hierarchical finite element method (HFEM), the
differential quadrature method (DQM) and the isogeometric analysis (IGA). The DQHFEM also overcame many limitations or difficulties of the three methods. This unique compendium systematically introduces the construction of various DQHFEM elements of commonly used geometric shapes like triangle, tetrahedrons, pyramids, etc. Abundant examples are also included such as statics and dynamics, isotropic materials and composites, linear and nonlinear problems, plates as well as shells and solid structures. This useful reference text focuses largely on numerical algorithms, but also introduces some latest advances on high order mesh generation, which often has been regarded as the major bottle neck for the wide application of high order FEM.

Spectral Methods for Incompressible Viscous Flow - Roger Peyret 2013-03-09 This well-written book explains the theory of spectral methods and their application to the computation of viscous incompressible fluid flow, in clear and elementary terms. With many examples throughout, the work will be useful to those teaching at the graduate level, as well as to researchers working in the area.

Mathematics Applied to Engineering and Management - Mangey Ram 2019-08-08 This book offers the latest research advances in the field of mathematics applications in engineering sciences and provides a reference with a theoretical and sound background, along with case studies. In recent years, mathematics has had an amazing growth in engineering sciences. It forms the common foundation of all engineering disciplines. This new book provides a comprehensive range of mathematics applied to various fields of engineering for different tasks in fields such as civil engineering, structural engineering, computer science, electrical engineering, among others. It offers articles that develop the applications of mathematics in engineering sciences, conveys the innovative research ideas, offers real-world utility of mathematics, and plays a significant role in the life of academics, practitioners, researchers, and industry leaders. Focuses on the latest research in the field of engineering applications includes recent findings from various institutions identifies the gaps in the knowledge of the field and provides the latest approaches. Presents international studies and findings in modelling and simulation. Offers various mathematical tools, techniques, strategies, and methods across different engineering fields.

Application of Differential Quadrature Method to the Analysis of Delamination Buckling of Laminated Composites - 1999

Numerical Quadrature and Solution of Ordinary Differential Equations - A.H. Stroud 2012-12-06 This is a textbook for a one semester course on numerical analysis for senior undergraduate or beginning graduate students with no previous knowledge of the subject. The prerequisites are calculus, some knowledge of ordinary differential equations, and knowledge of computer programming using Fortran. Normally this should be half of a two semester course, the other semester covering numerical solution of linear systems, inversion of matrices and roots of polynomials. Neither semester should be a prerequisite for the other. This would prepare the student for advanced topics on numerical analysis such as partial differential equations. We are philosophically opposed to a one semester survey of “numerical methods” course which covers all of the above mentioned topics, plus perhaps others, in one semester. We believe the student in such a course does not learn enough about anyone topic to develop an appreciation for it. For reference Chapter 1 contains statements of results from other branches of mathematics needed for the numerical analysis. The instructor may have to review some of these results. Chapter 2 contains basic results about interpolation. We spend only about one week of a semester on interpolation and divide the remainder of the semester between quadrature and differential equations. Most of the sections not marked with an * can be covered in one semester. The sections marked with an * are included as a guide for further study.

Application of the Differential Quadrature Method to the Buckling Analysis of Cylindrical Shells and Tanks - 1999

Application of Differential Quadrature to the Analysis of Structural Components - Sung Kuk Jang 1987

Automated Solution of Differential Equations by the Finite Element Method - Anders Logg 2012-02-24 This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEniCS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Discrete Element Analysis Methods of Generic Differential Quadratures - Chang-New Chen 2008-09-12 Following the advance in computer technology, the numerical technique has made signiﬁcant progress in the past decades. Among the major techniques available for numerically analyzing continuum mechanics problems, 3D finite element method is most early developed. It is diﬃcult to deal with discontinuous geometries. A decade later, the diﬀerential quadrature and generic differential quadrature based discrete element analysis method have been developed and used to solve various continuum mechanics problems. These methods have the same advantage as the 3D ﬁnite element method of consistently discretizing continuum mechanics problems with arbitrarily complex geometries. This book illustrates my research results obtained in developing the related novel discrete element analysis methods using both of the extended diﬀerential quadrature based spacial and temporal elements. It is attempted to introduce the developed numerical techniques as applied to the solution of various continuum mechanics problems, systematically.

Quadrature Theory - Helmut Brass 2011-10-12 Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a comprehensive treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (closed and open) problems. The inclusion of the word “theory” in the title highlights the authors’ emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called “co-observations,” which form the central organizing principle for the authors’ theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.

Mechanical Vibration: Where Do We Stand? - Isaac Elishakoff 2007-12-12 Written by the world’s leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It examines the most important contributions to the field made in the past decade, offering a critical and comprehensive portrait of the subject from various complementary perspectives.

Line Integral Methods for Conservative Problems - Luigi Brugnano 2016-03-09 Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems. Assuming only basic knowledge of numerical quadrature and Runge-Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of
Differential Quadrature and Its Application in Engineering: Engineering Applications made in sequential stages over the life cycle of a chemical plant. In the design phase, the optimal operating behavior of plane structures characterized by irregular domains and mechanical discontinuities. Properties that can change point by point. A finite element formulation is also available to investigate the volume fraction of the constituents for those layers that vary their mechanical properties along the thickness. The behavior of these structures through different approaches and structural theories. In particular, this code allows analysis of doubly curved shells made of innovative materials, using the Generalized Differential Quadrature Anisotropic Shells, Plates, Arches and Beams
diQuMaSPAB, acronym of “Differential Quadrature for Mechanics of Anisotropic Shells, Plates, Arches and Beams”, is a computational code, which can be used for the numerical analysis of doubly curved shells made of innovative materials, using the Generalized Differential Quadrature (GDQ) and the Generalized Integral Quadrature (GIQ) methods. The software can investigate the mechanical behavior of these structures through different approaches and structural theories. In particular, this code allows considering a kinematic expansion characterized by different degrees of freedom for the Equivalent Single Layer (ESL) theories and for each layer when the Layer-Wise (LW) approach is taken into account. As far as the materials are concerned, it is possible to consider different laminate schemes, as well as various distributions of the volume fraction of the constituents for those layers that vary their mechanical properties along the thickness. In addition, the software analyzes structures with variable thickness and characterized by variable mechanical properties that can change point by point. A finite element formulation is also available to investigate the mechanical behavior of plane structures characterized by irregular domains and mechanical discontinuities.

Differential Quadrature to the Analysis of Static Aeroelastic Phenomena Yeng Way Loo 1991

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations Uri M. Ascher 1994-12-01 This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Applied Stochastic Differential Equations Simo Särkkä 2019-04-30 Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of how stochastic differential equations are all about, but also covers the essentials of It calculus, the central theorems in the field, and such approximation schemes as stochastic Runge-Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book’s practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments. MATLAB/Octave source code is available for download, promoting hands-on work with the methods.

Meshless Methods and Their Numerical Properties Hua Li 2013-02-22 Meshless, or meshfree, methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex
engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bottom submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods. The book discusses the advantages and disadvantages of SMTs along with their performance. A general framework for analyzing the performance of SMTs is given. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.

Ostrowski Type Inequalities and Applications in Numerical Integration—Sever S. Dragomir 2002-05-31 It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives", Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequalities and Applications, http://rgmia.vu.edu.au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given.

Space Modulation Techniques—Raed Mesleh 2018-06-19 Explores the fundamentals required to understand, analyze, and implement space modulation techniques (SMTs) in coherent and non-coherent radio frequency environments This book focuses on the concept of space modulation techniques (SMTs), and covers those emerging high data rate wireless communication techniques. The book discusses the advantages and disadvantages of SMTs along with their performance. A general framework for analyzing the performance of SMTs is provided and used to detail their performance over several generalized fading channels. The book also addresses the transmitter design of these techniques with the optimum number of hardware components and the use of these techniques in cooperative and mm-Wave communications. Beginning with an introduction to the subject and a brief history, Space Modulation Techniques goes on to offer chapters covering MIMO systems like spatial multiplexing and space-time coding. It then looks at channel models, such as Rayleigh, Rician, Nakagami, and other generalized distributions. A discussion of SMTs includes techniques like space shift keying (SSK), space-time shift keying (STSK), trellis coded spatial modulation (TCSM), spatial modulation (SM), generalized spatial modulation (GSM), quadrature spatial modulation (QSM), and more. The book also presents a non-coherent design for different SMTs, and a framework for SMTs’ performance analysis in different channel conditions and in the presence of channel imperfections, all that along with an information theoretic treatment of SMTs. Lastly, it provides performance comparisons, results, and MATLAB codes and offers readers practical implementation designs for SMTs. The book also: Provides readers with the expertise of the inventors of space modulation techniques (SMTs) Analyzes error performance, capacity performance, and system complexity. Discusses practical implementation of SMTs and studies SMTs with cooperative and mm-Wave communications Explores and compares MIMO schemes Space Modulation Techniques is an ideal book for professional and academic readers that are active in the field of SMT MIMO systems.

Numerical Methods for Differential Equations—J.R. Dormand 2018-05-04 With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also offers a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

Laminated Composite Doubly-Curved Shell Structures—Francesco Tornabene 2016-05-17 The title, “Laminated Composite Doubly-Curved Shell Structures, Differential and Integral Quadrature. Strong Form Finite Elements” illustrates the theme treated and the prospective followed during the composition of the present work. The aim of this manuscript is to analyze the static and dynamic behavior of thick and moderately thick composite shells through the application of the Differential Quadrature (DQ) method. The book is divided into two volumes wherein the principal higher order structural theories are illustrated in detail and the mechanical behavior of doubly-curved structures are presented by several static and dynamic numerical applications. In particular, the first volume is mainly theoretical, whereas the second one is mainly related to the numerical DQ technique and its applications in the structural field. The numerical results reported in the present volume are compared to the one available in the literature, but also to the ones obtained through several codes based on the Finite Element Method (FEM). Furthermore, an advanced version of the DQ method, termed Strong Formulation Finite Element Method (SFEM), is presented. The SFEM solves the differential equations inside each element in the strong form and implements the mapping technique typical of the FEM.